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SzCTION I

SUMMARY OF PROGRAM
PROGRAM OBJECTIVES
To develop practical, low cost, real-time methods for suppressing noise

which has been acoustically added to speech.

To demonstrate that through the incorporation of the noise suppression
methods speech can be ~ffectively analysed for narrow band digital

transmission in practical operating environments.

SUMMARY OF TASKS AND RESULTS

TNTRODUCTION
In Section II the key research cfforts of the program are summarized.

In Section IV, thiree recent tochnical mapers are presented. Section V lists

the major publications gonerated under this contract.




SECTION II

SUPPRESSION OF ACOUSTIC NOISE IN SPEECH USING
SPECTRAL SUBTRACTION

I. INTRODUCTION

Background nolise acoustically added to speech can degrade the
performance of digital voice processors used for applications such as speech
compression, recognition, and authentication [l]. The effects of background
noise can be reduced by using noise-cancelling microphones, internal
modification of the voice processor algorithms to explicitly compensate for
signal contamination, or preprocessor noise reduction. Noise-cancelling
microphones, although essential for extremely high noise enviromments such as
the helicopter cockpit, offer little or no noise reduction above 1 kHz [1].
Techniques available for wvoice processor modification to account for noise
contamination are being developed [4). Preprocessor noise reduction offers
the advantage that noise stripping is done on the waveform itself with the
output being either digital or analog speech. Thus, existing voice processors
tuned to clean specch can continue to be used unmodified. Also, since the
output 15 speech, the noise stripping becomes independent of any specific
subsequent speech processor implementation (it could be connected to a CCD

channel vocoder or a digital LPC vocoder).

The objectives of this research wer~ to develop a noise suppression
technique, implement a1 computationally efficient algorithm, and test its
performance in actual noise environments. The approach used was to estimate
the magnitude frequency spectrum of the underlying clean speech by subtracting

the noise magnitude spectrum from the noisy speech spectrum. The average

e —————— ,__________J’
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noise magnitude was measured during nonspeech activity. The noise suppressor

is implemented using about the same amount of computation as required in a FFT
convolution. It is tested on speech recorded in a helicopter environment.

Its performance is measured using the Diagnostic Rhyme Test (DRT) [6].

SIGNAL II. ESTIMATION USING SPECTRAL SUBTRACTION {3}, (4]

Signal x{1) digitized from a single microphone consists of the sum of
speech Sp(i) and ambient acoustic noise n{i}). It is assumed that the noise is
locally stationary to the extent that average value of its spectral magnitude
during speech activity 1s equal to that measured just prior to speech
activity. Using these assumptions the spectral subtraction algorithm attempts
to suppress the additive acoustic noise component n(i) from x(i) by the

following steps:

1. Segment the noisy data into windowed analysis blocks of length M

samples, x(i},i=0,1...,M~1.
2. Compute the N polnt DFT X(k} of data x(i}.

3. Estimate the specch spectrum S(k} by subtracting the average noise
spectral magnitude, B(k) = ave|N(k) |, calculated during non-speech activity,

from |[X(k) |:
Sik) = [IX(k) 1-B(k) exp (3 ARG[X(k)])

The motivation behind this approach 1is to subtract from the noisy
speech spectrum, an estimate of the noise spectrum which is readily available.
The magnitude of N(k) i1s roplaced by its average value, B(X), and the phase of

N(k) 1s replaced by the phase of X(k).




INTELLIGIBILITY AND QUALITY TESTING RESULTS ON
SPECTRAL SUBTRACTION AND LPC-10 (5]

Experiment Definition

The data base consisted of a three-speaker Diagnoséic Rhyme Test (DRT)
list recorded in the RH-53 helicopter. This data base was processed by the
real-time spectral subtraction algorithm as implemented on the Utah FPS-120B
array processor. Audio tapes consisting of the original digital source and
the spectral subtraction output were then sent to the Naval Research
Laboratory, (NRL). Each of these tapes were processed through NRL's LPC-10
2400bps real-time bandwidth compression system, generating two more tapes:
original digital source with LPC, and spectral subtraction output with LPC.

Finally these four tapes were sent to Dynastat for intelligibility scoring.

Results

The total DRT score for each tape is:

Original Digitized Source = 85.2
Spectral Subtraction Output = 79.8
Original Digitized Source With LPC = 53.9
Spectral Subtraction Output with LPC = 64.5

Discussion

The results of this experiment clearly show that the intelligibility of
2400 bps LPC coded speech can be significantly increased by preprocessing with
spectral subtraction. These results should be considered as a lower bound for
expected performance. For an actual implementation, the intermediate analog
tape recording would be absent. More importantly the noise suppression
algorithm could be tailored if necessary to compensate for known vocoder noise
sensitivities. (This version was not tailored to operate with any specific

vgpoder.) Finally the noise rejection below lkHz could be further improved by




use of an improved noise cancellation microphone.
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SUPPRESSION OF ACOUSTIC NOISE IN SPEECH
USING TWO MICROPHONE ADAPTIVE NOISE CANCELLATION

INTRODUCTION

It has been shown that there is a significant reduction in measured
speech intelligibility and quality due to the ambient background noise
generated in many operating environments {1]. A number of single microphone
approaches for reducing the background noise added to speech have been
developed [2]. However these methods become ineffective when the noise power
is equal to or greater than the signal power or when the noise spectral
characteristics change rapidly in time. This summary describes an alternative
approach to noise suppression in which a second correlated noise source is
adaptively filtered to minimize the output power between the two microphone
signals. Three adaptive algorithm implementations were investigated: the
Widrow-Hoff IMS approach (4], the lattice gradient approach [3], [4], and the
frequency domain short time Fourier Transform approach [5]. Each approach was
compared in terms of degree of noise power reduction, algorithm settling time,

and degree of speech enhancement.

RESULTS
The performance of any noise suppression algorithm is ultimately
determined by the improvement in measured intelligibility and quality due to
the algorithm. Quantitative methods for measuring these improvements use
scoring tests such as the DRT [6]. At the time of this experiment, a

two-microphone data base was not available.

Instead a controlled data base was used to compare the performance of




these three methods: A stationary white noise source was recorded from an
analog noise generator onto audio tape. The acoustic noise was generated by
playing the audio tape out through a loud speaker into a hard walled room.
The reference signal microphone was placed next to the loud speaker, while the
primary microphone was placed twelve feet away next to the control terminal.
The speaker spoke into the primary microphone while controlling the stereo
recording program. The noise power was adjusted to such a level that the
recorded speech was completely masked. The signals were filtered at 3.2kHz,
sampled at 6.67kHz, and quantized to fifteen bits. Recordings were made with

and without speech present, each lasting 24.5 sec.

For each time domain algorithm a step size was chosen such that the
echo 1nduced at the output was barely discernible. Such a choice thus
represents a compromise between fast adaptation, (step size large) and minimal
speech distortion, (step size small). Each algorithm then processed the
acoustic data in the absence of speech activity in order to determine
convergence rate versus processing time. Each method reaches a steady state
error of about -15dB after about 15 seconds. Since the noise was acoustically
added, no underlying clean speech spectrum was available for comparison.
However, it was judged that the intelligibility of the processed speech had
clearly improved. This was based upon the fact that before processing it was
difficult to even detect that there was speech present in the noise, while

after processing the speech was understandable.

In summary, though this two microphone approach to noise suppression
requires a second signal and possibly excessive computation due to long filter

lengths, it offers a potentially powerful approach for speech enhancement in




severe nolse enviromments. Finally the processing time of frequency domain
FORTRAN algorithm was approximately 3 1/2 time faster than the IMS FORTRAN

algorithm as predicted duc to the efficiency provided by the FFT.
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TOWARDS A MATHEMATICAL THEORY OF PERCEPTION
James Kajivya

ABSTRACT

A new technigue for the modelling of perceptual systems called formal
modelling is developed. This technigue begins with qualitative observations
about the perceptual system, the so-called perceptual symmetries, to obtain
through mathematical analysis certain model structures which may then be
calibrated by experiment. The analysis proceeds in two different ways
depending upon the cholce of linear or nonlinear models. For the linear case,
the analysis proceeds through the mecthods of unitary representation theory.
It begins with a unitary group representation on the image space and produces
what we have called the fundamental structure theorem. For the nonlinear
case, the analysis makes essential use of infinite-dimensional manifold
theory. It begins with a Lle group actlcn on an 1mage manifold and produces

the fundamental structure formula.

These techniques will be used to study the brightness perception
mechanism of the numan visual system. Several visual groups are defined and
their corresponding structures for visual system models are obtained. A new
transform called the Mandala transform will be deduced from a certain visual
group and its implications for image processing will be discussed. Several
new phenomena of brightness perception will be presented. New facts about the
Mach band 1llusion along with new adaptation phenomena will be preserted.
Also a new visual illusion will be presented. A visual model based on the
above techniques will be presented. It will also be shown how use of

statistical estimation theory can be made in the study of contrast adaptation.

_ . _1
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Furthermore, a mathematical irterpretation of unconscious inference and a
simple explanation of the Tolhurst effect without mutual channel inhibition
will be given. Finally, image processing algorithms suggested by the model
will be used to process a real-world image for enhancement and for "form" and

texture extraction.
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A CONSTANT PERCENTAGE BANDWIDTH TRANSFORM
FOR ACOUSTIC SIGNAL PROCESSING

James E. Youngberg

ABSTRACT
This paper describes a constant percentage bandwidth transform for
acoustic signal processing. Such a transform is shown to emulate behavior
found in the human auditory system, making possible both the imitation of
peripheral auditory anailysis, and processing which is more closely linked to

perception than 1s possible using constant bandwidth analysis.

To enable such processing, a synthesis transformation 1is developed
which, when cascaded with the analysis transformation, provides an
analysis-synthesis identity in the absence of spectral modification. Various
properties of the transform pair are derived, and a filterbank analogy is used
to create a basis for intuitive understanding of the transform's operation and

properties.

The effects of spectral domain modification are described and shown to

be related to the properties of the analysis window function.

Principles governing discrete implementation of the transform pair are
discussed, and relationships are formalized which specify the sampling of the
spectral domain. These relationships are shown to depend simultaneously on
che analysis window function and the selectivity (or Q) of analysis. An
alternative form of the synthesis is qgiven which facilitates a more nearly
optimal logarithmic sampling of the spectral frequency axis. A minimal
sampling pattern is given for the spectral domain which has an overall rate

equivalent to the rate necessary to sample the constant bandwidth spectral
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domain.

The naturc and computation of the constant-Q spectral magnitude and
phase function is discussed, and threc main methods are evaluated whereby the

spectral phase may be unwrapped.

Fine resolution constant~Q spoctrograms are presented which  show

clearly the properties of constant-Q analysis applied to speech.

The use of the transform pair is discussed in the solution of the
perception-related problom of time scale compression and expansion of speech.

Results of this experiment are discussed,

Finally, suggestions for further research and applications are

presented.
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ACOUSTIC SIGNAL PROCESSING IN THE CONTEXT
OF A PERCEPTUAL MODEL

Tracy Lind Petersen

ABSTRACT

The perceptual analysis of acoustic waveforms by the auditory system
involves both mechanical and neural transformations of the stimulating signal.
Therefore, a distinction exists between the stimulus space as characterized by
acoustic vibration, and the auditory perceptual smace as characterized by
perceptually transformed acoustic signal information. This dissertation
explores acoustic signal processing within the domain of auditory perception,
beginning with the formal development of an integral transformation which can

simulate certain freguency selactive properties of the auditory system.

A parameterized family of analysis-synthesis transform pairs which
behave as identities in the absence of perceptual modification is developed
from a property of homogeneous functions. A particular member of the
transform familv 15 then implemented to  simulate  frequency selective
properties of the peripheral awditory system. Frequency sensitivity typically

found in fibers of the auditory nerve is also modeled.

Following this, an ability of the auditory brain to suppress the
perception of background noise is simulated, based on a mathematical model of
loudness perception, This method of noise suppression, called "perceptual
subtraction"' is applied to the noise suppression processing of signals
corrupted by additive noise. The signal processing results give empirical

support to a theory which has been put forward to explain loudness processing

by the brain.
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SPEECH ARTICULATION RATE CHANGE USING RECURSIVE
BANDWIDTH SCALING

H. Ravindra

ABSTRACT

Speech articulation rate change is done by analyzing the speech signal
into several frequency channels, scaling the unwrapped vhase signal in each
channel and synthesizing a new speech signal using the modified channel
signals and their scaled center frequencies. It is shown that each channel
signai can be modeled as the simultaneous amplitude and phase modulation of a
carrier and that only scaling the phase modulating signal does not result in a
proportional scaling of the bandwidth of the channel signals which results in
the introduction of different types of distortions like frequency aliasing
between channels when an increase in the articulation rate is attempted and
reverberation when a rate reduction 1s attempted. It 1is proposed that the
amplitude modulating signal bandwidth should also be scaled and a recursive

method to do this is discussed.
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ESTIMATION OF THE PARAMETERS OF AN AUTOREGRESSIVE
PROCESS
IN THE PRESENCE OF ADDITIVE WHITE NOISE

William J. Done

ABSTRACT
Applications of linear prediction (LP) algorithms have been successful
in modeling various physical processes. In the area of speech analysis this
has resulted in the development of LP vocoders, devices used in digital speech
communication systems. The LP algorithms used in speech and other areas are
based on all-pole models for the signal being considered. With white noise
excitation to the model, the all-pole LP model 1s equivalent to the

autoregressive (AR) model.

With the the success of this model for speech well established, the
application of LP algorithms 1n nolsy environments 1s being considered.
Existing LP algorithms perform poorly in these conditions. Additive white
noise severely cffects the intelligibility and quality of speech after

analysis by an LP vocoder.

[t is known that the addition of white noise to an AR process produces
data that can be described by an autoregressive moving-average (ARMA) model.
The AR coefficients of the ARMA model are identical to the AR coefficients of
the original AR process. This dissertation investigates the practicality of
this model for estimating the coefficients of the original AR process. The
mathematical details for this model are reviewed. Those for the

autocorrelation method LP aljorithm are also discussed.

Experimental results obtained from several parameter estimation
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techniques are presented. These methods include the autocorrelation method
for LP and a Newton-Raphson algorithm which estimates the ARMA parameters from
the noisy data. These estimation methods are applied to several AR processes
degraded by additive white noise. Results show that using an algorithm based
on the ARMA model for the data improves the estimates for the original AR

coefficients.
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APPLICATION OF NONPARAMETRIC RANK-ORDER
STATISTICS TO ROBUST SPEECH ACTIVITY DETECTION

B. V. Cox

ABSTRACT

This report describes a theoretical and experimental investigation for
detecting the presence of speech in wideband noise. A robust algorithm for
making the silence-voiced-unvoiced decision is described. This algorithm is
based on a nonparametric statistical signal-detection scheme that does not
require a training set of data and maintains a constant false-alarm rate for a
broad class of noise inputs. The nonparametric decision procedure is the
multiple use of the two-sample Savage T statistic. The performance of this
detector is evaluated and compared to that obtained by manually classifying
twenty recorded utterances with 39, 30, 20, 10, and 0 decibel signal-to-noise
ratios. In limited testing, the average probability of misclassification is
less than 6 percent, 12 percent, and 46 percent for signal-to-noise ratios of

39, 20, and 0 cacibels respectively.
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SECTION IV

CRITICAL BAND ANALYSIS-SYNTHESIS

Tracy L. Petersen
Steven F. Boll

ABSTRACT

The formal derivation of an integral transformation which can simulate

certain frequency selective (critical bandwidth) properties of the auditory
system is given. A parameterized family of analysis-synthesis transform pairs
which behave as identities in the absence of perceptual modification is
developed from a property of homogeneous functions. The formulation
facilitates a flexible choice of analysis frequencies and frequency selective
response characteristics. A particular member of the transform family is then
implemented to simulate frequency selective properties of the peripheral

auditory system.

INTRODUCTION

Motivation

A motivation for the work presented here is based in the distinction
which exists between signal representation in the stimulus domain as
characterized by acoustical vibration and signal representation in the
perceptual domain as characterized by the firing of neurons within portions of
the auditory csystem. The work to be described provides a signal processing
framework for modeling certain perceptually significant properties of the
auditory system. It is known that the ear has bandwidth sensitivity which
increases with frequency. These frequency dependent bandwidth are called
critical bands and their existence has been firmly established[l]. Frequency
selective characteristics of the auditory periphery are modeled through the

design of an integral transform. Formulation of the transform provides a




20

flexible choice of analysis frequencies and frequency selective response
characteristics. A particular frequency response characteristic is formulated
and implemented to model the prototypical frequency sensitivity of auditory

nerve fibers.
A PARAMETERIZED FAMILY OF
CONSTANT-Q TRANSFORMS

Introduction

It is known that auditory critical bandwidth increases with frequency.
Kajiya [2] derived a transform which is "constant-Q" in the sense that each
bandpass filter involved in the transformation has a bandwidth which is a
constant percentage of its center frequency. The transform Q is given by the
ratio of center frequency to bandwidth. This transformation has been
demonstrated as a powerful visual modeling and image processing tool (2], and
also as an acoustic signal processing tool for the time stretching of speech

(31.

The constant-Q transform provides a transformation integral which is
similar in form to that of the short-time Fourier transform. For purposes of
comparison it will be recalled that the short-time Fourier analysis integral
is
%(w,t) = JE(T) h(t-T) exp(-jwT) 4T (1)
where f(t) is the time signal to be analyzed and h(t) is the impulse response
of a low-pass function. The Constant-Q analysis integral derived by Kajiya is

of the form

F(w,t) = J£(T) h[(t-T) w] exp(-jwT) dT. (2)

The argument of the low-pass function h of equation 1 has been modified in
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equation 2 to have a dependence upon frequency w. Equation 2 may be
interpreted in light of a filterbank analogy. The right side of equation 4-2

may be rewritten as
exp(-jwt) J£(T) h[(t-T) w] exp(j(t-T) w] dT
which means

F(w,t) = exp(-jwt) {f(t) * [h(wt) exp(jwt)]}. (3)

Thus for given w, “(w,t) is seen to be a baseband demodulation of the signal
that results from convolving f(t) with a filter whose impulse response is
h(wt) exp(jwt). Noting the frequency response of this filter as ﬁ(w,v) with v
representing Fourier frequency, and designating F(v) as the Fourier transform

of f(t), allows equation_3 to be written as
F(w,t) = exp(-jwt) F(v) H(w,v)exp(jvt)dv/2W (4)

Homogeneous Function Formulation

A function G(x),X5,...,X,) is called homogeneous of degree p if for all

real c>0,

G(cxl,cxz,...,cxn) = cp[G(xl,xz,...,xn)].
Let G(w,v) be homogeneous of degree p and a bandpass function over frequency v
with center frequency w. Then it can be shown[4] that the bandpass function G

is Constant-Q
Analysis-Synthesis Derivation

In the constant-Q analysis integral of equation 3, the constant-Q
filter function is represented in the time domain as an impulse response
h(wt). In order to achieve the design flexibility which would allow the
modeling of prototypical auditory filter characteristics, the frequency domain
representation of equation 4 will be taken as a starting point. The relative
frequency spacing of simulated auditory filters is developed in terms of

position frequencies which are indicated as functions of w. For parameter P




22

and function R to be defined below, the bandpass frequency response fl(w.v)

from equation 4 is modified to be of the form

Hp[Rp(w) V]

for frequency variable v and center or position frequency Rp(w), With these

modifications, equation 4 becomes

F[RP(W) k] = exp[-jRp(w) t] X -

F(v) lePp(w) ,v] exp(jvt) dv/2W

where F(v) is the Fourier transform of the input signal f(t), and F[Pp(w) ,t]

is the constant-Q transform of f(t) evaluated at frequency Rp(w) and time t.

We now determine functions Rp, H'p' such that f(t) is recoverable from
F[Pp(w) ,t]. The following lemmas 3nd theorem are stated without proof. Their

proofs can be found in [4]

LEWA 1.

exp(w) , p=0
Suppose Rp(w) - W1/p, 50

0, P R>0
and dp) =

-« , p=0,

Further, suppose Hp[Rp(w) ,v] has the following properties:
1. Hp[Rp(w),vl = 0 for v<0, for all w.
2. Hp[Rp(w) ,v] is continuous in v.

3. H.p[Rp(w) ,v] is homogeneous of degree-p, i.e., for c>0

Hy[CR, (W) ycv] = P Hy[Ry (W) ,v].

Then for every p>0 there exists a constant Bp such that
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I(v) = JHL[R, (W) ,v]dw (6)
P d(p)ﬂp Rp

Bp, v>0

0, v<0.

LEMMA 2.

1f p, Ip, Bp are as above, and if f(t) is a real time signal with Fourier
transform F(v) such that F(0 =0, and Bp is finite, then
F(t)=(2/By) RE[ F(v) I;(V) exp(jvt) dv/2W |

where RE(x) is the real part of x.
THEOREM.

Let f(t) be a real time signal with Fourier transform F(v) and constant-Q
transform F[g,t]. Further, assume F(v)=0, v=0. Then for Bp as in Lemma 2,

f(t) is recoverable from F[Rp(w) ,t] by the transformation

f(t) = (2/Bp) RE { fF[Rp(w),t] exp{jRp(w)tl dw } (7

The synthesis expression of equation 7 shows that all channel signals
are first modulated back to their original position frequencies after which
all channel signals are integrated or summed. The real part of this sum is

then scaled by the constant Z/Bp to recover f(t).
Critical Band Transform

In this section the constant-Q transform is first sampled in frequency
and then modified to a form which approximates the critical band filterbank

properties of the auditory periphery.

From lemma 1, property 3), the bandpass function I-lp must be homogeneous
of degree p. A function Hp which satisfies auditory filter characteristics
given by Evans and Wilson [5] and also conforms to the above conditions for

homogeneity and has a Q of 6 has been implemented in this work as a modified

P
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form of the beta density function. The parameters a,b, in the following
expression for Hp, were fixed experimentally to set both the Q and the skirt
slopes of the filter. For Fourier frequency variable v, position frequency
Rp(w), and parameters a,b,
v3{[(b+a)/al R,(w)-v}P
(b/a)® Ry (W) atbtp

H {R_(w)},v] ={for 0<v(bta)/a {w)
p!Rp A (8)

U, otherwise.

In a discrete implementation, a finite set of position frequencies may
be determined by evaluating Rp(w) for discrete values of w. Based on the data
of Wever {6], Zwislocki [7] derived a relationship between critical bandwidth
and the density of neurons which connect with sensory cells of the inner ear,
located along the basilar membrane. This relationship suggests that 1300
neurons approximately correspond to an interval of one critical band, and that
critical bands represent uniform distance increments along the basilar

membrane .

Uniform spacing on the basilar membrane corresponds to an exponential
spacing of frequency measurced in Hertz (8]. Thus, the position frequency
function

Rp<w) = exp(w)

is chosen which, from lemma 1, property 4), gives p=0. Discrete position

frequencies of filters in the constant-Q filterbank are then given by the set
RO(wi) = exp(wi), 1=1,N.

where

wi-wi_1=(wN—wl)/(N—l).
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Substituting these discrete values of Ry(w) into equation 5 gives
Flexp(w;) ,t] = exp[-] exp(w;)t]
X JF(v) Hylexp(w;),v] exp(jvt) dv/ZW

i=1,N, (9)

which specifies the constant-Q transform at the N analysis frequencies

exp(w;) , i=1,N.

For this implementation, total signal bandwidth was limited to 4 kHz.
Position frequencies were initially selected over 50 positions from exp(wy) =40

Hz to exp(w50)=3900 Hz,

Because the Q of critical bandwidth drops off toward lower frequencies,
the wider bandwidths in this frequency region may be achieved by summing small
groups of filters from the constant-Q bank. By interactively summing groups
of low frequency filters and measuring the resulting bandwidth, the 50 filters
of the constant-Q bank described above were reduced to only 23 filters which
closely conform to critical bandwidths. The resulting critical band filterbank
1s plotted in figure 1, where filters 1 through 6 have been normalized to 1.
It can be shown {4] that summing these filters results in an overall frequency

response which has a passband ripple of 0.2dB.

SUMMARY
Through the design of transformations which relate acoustic signals to
their critical band representations, we create a means for relating signal
modifications to perceptual criteria. Thus signal processing in the critical
band domain may be cvaluated in the stimulus domain through the combined

process of reconstruction and listening to the processed signal. Additional

work 1in the processing of critical band signals has been conducted by the
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authors{9] where time-varying modifications to critical band intensities are

performed to improve perceived signal-to-noise ratios.
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ACOUSTIC NOISE SUPPRESSION IN THE
CONTEXT OF A PERCEPTUAL MODEL

Tracy L. Petersen
Steven F. Boll

ABSTRACT

An acoustic noise suppression algorithm has been developed which
suppresses noise from speech by first filtering it into a set of signals which
approxlmate the loudness components perceived by the auditory system. These
signals are generated by passing the input stimulus waveform through a filter
bank with frequency bandwidths which approximate the ear's critical
bandwidths. The noise on each signal 1is then suppressed using spectral
subtraction techniques in a domain of simulated perception. This approach to
noise suppression retains the intelligibility produced by spectral subtraction
methods while eliminating the accompanying musical quality.

INTRODUCTION

The work to be described explores acoustic signal processing within the
domain of perception. Such an approach requires both a knowledge of auditory
system signal processing transformations, and adeguate techniques for their
simulation. Given a capability to map acoustic signals into the domain of
perception and process this transformed information to suppress perceived
ievels of background noise, the processing must be followed by inverse
transformations which return perceptually processed signals to an acoustic
signal representation. This approach is initiated from a signal processing
framework which i3 based on a mathematical model of peripheral auditory
frequency analysis. Mathematical formulations for loudness perception and the
selective identification of a tone in noise are implemented to suppress noise
loudness as the simulated function of auditory brain activity. The brain's

ability to concentrate upon signal components while ignoring the loudness of
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background noise is described as an operation of selective listening. Each
stage of the mathematical modeling is invertable. Thus it is possible to
estimate processed signal intensities which in theory simulate the perception
of signal loudness without imposing a need upon the brain to invoke the
operation of selective listening in order to suppress the loudness of a

masking background noilse.

PERCEPTUAL SUBTRACTION OF NOISE
Critical Band Filtering

Peripheral auditory analysis of the ear may be likened to a bank of
bandpass filters. The filters which form this auditory filter bank are called
critical bands {1]. In this work we use the critical band analysis-synthesis
method as given in {2, 3] This method simulates the critical band frequency
analysis of the auditory periphery, while an inversion formula allows this
signal to be reconstructed from its critical band filter bank analysis
representation., Analysis over a 4kHz bandwidth was performed with a bank of

23 critical band filters.

Auditory Threshold and Masking

in audition the term "masking” is used to describe the situation where
the loudness of a particular sound partially or completely obscures from
perception a second sound. The masking sound is said to induce a threshold

shift in signal detectability.

It is known that the threshold intensity of a pure unmasked tone varies
as a function of tone frequency. Some workers have suggested (4] that the
frequency dependent threshold shifts outside the minimum threshold region may
be modeled as t e result of internal masking which is inherent in the

mechanisms of the auditory system itself. This approach proves to be useful




30

in modeling loudness perception as discussed in the remaining sections of this

paper .
Loudness Perception

It is known that strong compressional mechanisms within the auditory
system transform a stimulus intensity range of roughly twelve orders of
majgnitude down to a subjective range of approximatelv three or four orders.
Stevens has shown [5] that loudness perception tends to be a specific
mathematical function of stimulus intensity. 1If loudness is designated L, and
stimulus intensitv I, then

L=b1? (1)

Equation 1 gives the relationship which Stevens called the psychophysical
power law. It shows loudness to be 2 simple power function of intensity.

Hellman and Zwislocki {6] determined a value of the exponent to be 0.27.

A Model for Selective Listening

It is important to note that the critical band is an interval over
which the ear integrates cnergy. Threshold elevation induced by an external
masking noise is proportional to the noise encrgy within the critical band
associated with the masking (7). Zwislocki [4] has formulated an expression
for loudness perception over critical band intervals which puts an additional
interpretation upon the power law described in  the previous section,
Zwislocki reasoned  that loudness perception could be represented
mathematically in terms of the phenomenon of selective listening which is
implicit in psychophysical masking experiments. Selective listening refers to
the ability of a listener to selectively observe either the loudness of signal
and noise, the loudness of signal, or the loudness of noise when signal and

noise are presented simultaoncously. It is the ability of the ear to perform

ﬂn.-.g__.._._....._.‘..---n---.---Illlllﬂllllllllllllllll."
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selective listening tasks that makes possible the measurement of loudness

functions under masking{8]. Zwislocki theorized that selectively listening to

a tone in noise required a subtraction of noise loudness from total loudness

within the domain of perception.

In a masking situation the critical band contains the intensity 1 of
the signal, and the intensity E of an externally presented masking noise.
Here, as discussed eariier, absolute threshold is modeled as a masked
threshold shift due to an internal masking intensity. M. Scharf [9) shows that
the intensity M is 4 dB above the absolute threshold for a tone at critical
band center frequency. According to the power law the summed intensities
produce a total critical band loudness

Ly = blI+E+M)8 (2)

where b is a constant which depends on choice of units. To obtain an
expression for the loudness of the signal in noise within the critical band
the selective listening hypothesis is invoked to subtract off loudness due to
the masking intensities. This gives the loudness of the signal LS to be

Ly = bl(1+e+® - (Ee)®) (3)

At this point it is assumed the brain has performed its selective listening
operation, and in concentrating on the signal, parceives the critical band

toudness LS.

Input/Output Transformation

What is desired now as a processing goal is a stimulus domain
representation of signal intensity which would induce the perception of
loudness L while suppressing the perception of loudness due to the external

masking noise, The following 1is a derivation of an input/output
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characteristic which yields the desired intensity. Ly is first equated with

the loudness 1Lg that would be produced by some unmasked stimulus of intensity
J. An input/output characteristic is then derived which gives J in terms of
signal intensity I, external noise 1intensity E, internal masking intensity M,

L

and psychophysical power exponent . Because Lg is unmasked, the expression

for ES in terms of J nas zero external noise intensity, and by definition

ES = bl (Iw? - o0 (4)
ihe eguality of equations 5, and 4 then gives

b[(J+#)O - MO] = bl (1+Em O - (E4)O)

(30 = [(1+em)° - (2O + M©

Jo= [(I+E+M) O - (E+) D) 4 MO (1/O) _ oy, (5)

This new slgnal 1ntensity J i3 one which in theory stimulates the perception
of signal loudness L. without imp:sing a need upon the brain to invoke the
operation of selective listening in order to suppress the loudness of the

external maskling noisc.

SIGNAL PROCESSING IMPLEMENTATION

Critical Band Signal Generation

The processing of loudness information requires the computation of
intensity for each [3, 2] critical band in the analysis transform filterbank.
For tni3 umplementation each critical band filter is real, zero over negative

frequencies, and therefore has a complex time response.

Given a critical band filterbank composed of N filters, the kth
critical band filter operates on a real input signal f(t) to produce a complex
bandpass time sijnal. The time varying intensity, 2,(t) within the ith

critical band 15 taken as the square of the instantaneous amplitude of the

A;‘,<_~A__;_,_.““__._._-_ull----ﬁa-I-i-------IllllIlllIiIllIllIllIlllllIIllllllllllllllllllllll'l
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complex signal.

The perceptual subtraction of noisc as represented by cquation 5
assumes that the noise is stationary and that the cxpected value of noise
intensity within each critical band is known. Critical band noise intensity
estimates were obtained by performing critical band analysis over noise only
time intervais. For critical band k the expected noise intensity E; was

determined as a long-time average of the sguared instantaneous envelope.

Noise Suppression

The c¢ritical band intensity Z.(t) is due to both signal and noise.
Given that J, (t) is the processed intensity at the kth critical band, equation

5 then takes the form
. N R /!
T (6) = 1 (2 () #) O (B 4y Oy L0 (6)

Equation 6 defines the process of spectral subtraction in the perceptual
domain as motivatad by the simulation of selective listening. Critical
filterbank analysis is applied to f(t), producing N complex time signals.
Instantancous intensities 2, (t) are computed and each are processed according
to equation 6 to create a new critical band intensity J, (t). The appropriate
inverse operations are then performed and the N channels are summed to form

the output speech.

SUMMARY AND CONCLUSIONS
The success of this work both follows from and contrasts work by others
using spectral subtraction [10}. The parallel betwcen the method of
perceptual subtraction and the method of spectral subtraction is that in both
cases noise estimates are locally subtracted out in a transformed signal

space. In the case of sprctral subtraction this transformed signal space is
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the short-time Fourier spectrum. In the work presented here, this transformed
signal space is the perceptual space of critical band loudness, where

estimated noise loudnesses are subtracted from input signal loudness.

Typically, when noise is suppressed by a time-varying attenuation of
signal frequencies, successful processing requires reasonable signal-to-noise
ratios. In the case of perceptual subtraction, work by Hellman and Zwislocki
(8] formally suggests why this should be so. They observed that their results
parallel results obtained by Miskolczy-Fodor [11] in the measurement of
loudness perception by listeners with a particular hearing loss. They found
that loudness curves with noise induced threshold shifts have essentially the
same form as loudness curves obtained from listeners who suffer sensorineural
hearing 1loss (recruitment) resulting in higher than normal perception
thresholds. Perceptual subtraction is formulated to pass perceptible critical
band signal loudnes 2s and suppress critical band components which contribute
only noise. Based on the observation of Hellman and Zwislocki it is possible
to interpret the method of perceptual subtraction processing as a method for
simulating perception deafness to noise. Clearly, the opportunity to improve
time-varying signal-to-noise ratios through dynamic attenuation of signal
frequencies becomes limited as the noise begins to totally overtake the signal
because perceptual subtraction can only preserve signal components which have
perceptible intensities. In simulating perception deafness to noise we
inevitably simulate deafness to signal as well when noise completely dominates

the signal.

For testing purposes, speech signals were additively combined with

broadband white gaussian noise at signal-to-noise ratios from 40 to 0 dB in 10
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dB increments. Each sample, so constructed, was then processed for noise
suppression by the method of perceptual subtraction. In evaluating both the
perceptual subtraction and spectral subtraction algorithms, listening tests
revealed that when the signal-to-noise ratio of the input speech becomes less
that 10 dB, the quality of processed speech decreases sharply. In all cases,
however, a dramatic reduction of background noise was observed. A prominent
difference in processing results of this method with spectral subtraction was
fond to be in the overall perceived "smoothness" with which noise is
suppressed. Spectral subtraction processing produces speech with a somewhat
harsher quality than that produced by perceptual subtraction. Also, spectral
subtraction method tends to admit small, but nevertheless sharply perceived,
occurrenrces of noise residual artifacts. In the case of perceptual
subtraction, any remaining noise artifacts were near audible threshold and

judged generally less offensive.
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A SPLINE APPROACH TO SPEECH ANALYSIS/SYNTHESIS

Elaine Cohen

Department ofComputer Science
University of Utah
Salt Lake City, Utah

ABSTRACT

Vocoders based on linear models of the vocal tract such as LPC result in an
inverse polynomial fit of the spectrum, and along with homomorphic vocoders
require pitch estimation. Analysis/synthesis using B-spline basis functions
{s proposed in this preliminary paper. This is a local approximation scheme
which permits a concentration of parameters in regions of sreat..er importance
and employs easily computed least square coefficients. It can be used with
pitech based vocoders or as a standalone nonpitch based vocoder. An
experimental system, not yet optimized using special properties of human
speech, has been applied to samples of male speech, female speech,
simultaneous speech with two speakers, and noisy speech. Empirical results on
tape will be presented.

INTRODUCTION

Two frequently used signal analysis/synthesis techniques are linear predictive
codirg(5) and homomorphic filtering(7). Usually both of these methods result
in an approximation to the spectirum that has uniform characteristics over the
whole spectrum. Using the method proposed below in conjunce.ion with piteh
extraction can lead to a pitch based vocoder with a tightness of fit that
varies with the frequency. Such a fit car be done to some extent using
ngeleative" LPC(6), but it results-in piecewise inverse polynomials over the
different frequency spans will prcbably rot match at the cut frequency to

previde a cortinuous function, much less have any derivative continuity. 1In
fact, such a fit would be unusual. Ir the proposed methed continuity and a

somewhat variable degree of d2rivative continuity can be insured, but it




-38-

affects the number of parameters required.

Homomorphic filtering was developed as a general way to separate signals and
can be used to determine pitch as well as vocal tract impuls: response. The
method in its full generality, however, involves the computation of the
complex cepstrum, a difficult problem since the phase information is not in
convenient form. Tne spline vocoder used on the power spectrum yields a model
in which the variations of the i-th parameter is based on changes in energy in
the signal over the band of frequencies from w; to W .. If the changes are
not abrupt, then the parameters should change in a nonabrupt manner also.
These models are based on modelling the signal as the output of a single vocal
tract, so they are less robust in situations where the hypatheses cre not
applicable, as in the presence of multiple speakers or a noisy environment.
The spline method may be used differently in this situation. Matching can be
done on the real and imaginary parts of the Fourier transform of the windowed
speech, and a synthetic speech waveform generated. An jnitial attempt using
this method with many parameters has indicated that it .;rlts further
attention, Since the phase information is implicitly calculated, the problem
of unwrapping the raw data is not present, and since pitch extraction is
unnecessary, the quality of the speech is impervious to the pitech of the
speaker (equally well for female as well as male speech), the number of
speakers, or the presence of noise.

B-SPLINES

The computations involved become feasible because of the characteristics of
splines in particular and B splines in particular(1,2).
Definition 1: We say _S, (x) is a polynomial spline of order k over the
sequence “1)' X €% 01 and o, = card{xJ Xy = ’1" if
1. it is a polynomial of degree ( k=1) of “("1"1+1"
2. S (xgeck=1"y.
The x's are called the knots.
A polynomial is simply a spline with knots of multiplicity (”i) equal to zero.
Since splines are "piecewise polynomials", they can preserve the desirable
characteristics of polynomial approximation while allowing more flexibility.
It has been propossd to use imtegrals of Walsh functions as basis functions
for decompoSing signals(4), but they are instances of spline functions with

knots at appropriate powers ef (1/2).
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Definition 2: The i-th B-spline of order k, B, ,(x), on knot set {x,}
is a spline with the additional properties th

2. Bi.k“) > 0, for ’%xi"hk)'
3. ore of several normalizations, the two most common beingfn
1.k
(x) =1, or2B, , = 1.
ik

Tne collection of B-splines form a basis for the vector space of all splines
of order k on that knot sequence. Further, the above requirements mean that
there are at most k nonzero functions for any value of x. The matrices that
result in applying linear combinations of B-splines to solve least square or
interpolation problems are then banded of width (2k-1), and hence are more
easily solvable computationally. If the knots are evenly spaced, all the
B1 l‘(:t) are just translations of one fixed B-spline, and they have the
interesting convolutional property that Bi .k'Bp.r 3 Bq.kor' and hence a spline
filter acting on a spline signal yields a higher order spline with known
parameters. The ideal low pass filter, the Fourier window, the triangular
window, and the Parzens window are all examples of B-splines occuring in
signal processing, as is any other window or filter that can be represented as
a piecewise polynomial. Indeed, their versatility has caused them to be used

in some Computer Aided Geometric Design systems instead of Rational
polynomials.

SPLINE METHOD

while the general ideas described here can be applied to a variety of
situations, we shall develop an application here that fits the signal by
fitting real and imaginary parts of the Fourier transform with linear
combinations of B-splines and then resyntheses the the signal using the
inverse transforms of the B-splines. Frequently these inverse transforms can

be tabled so that the inverse transform need nct be computed.

Les s(t) be a low pass filtered version of a signal, and let s(tp.t) s
s{t-:p)u(t.) be the windowed signal it is desired to aproximata. For ease of
presentation we call S(w)= F[s(tp.t)]. where F designates the Fourier

sransform.

usmaaferth the k denoting the order of the splire will be omitted since it is
427% the same within any application, We wish to fit S(w) in some optimal
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manrer by a B-spline function given by

m
ET ciBi(w). w>0
S{w)= R (1)
ci'Bi(-w). otherwise,
=g

where the ¢y = Xy + J yy are complex valued parameters. We desire to minimize

-

the error £ wnen defined in the standard least squares sense as follows.

E = JlS(w)-S(w)lz (2)

/

The pz2rameters are determined by minimizing E ir (2) with respect to each of
the pzrameters, which is done by setting
N
JEAx, = 0idE4y;= 0; 1 = 0,1,...m.
Tne rzsulting linear equations are banded since B-splines' have supports which

overlsp cnly partially,i.e.,

jBi(w)Bp(w) = 0,

Inversion and solution for the parameters is computationally easier than the

when pii-k+2,...,i+¢k=-1,

polynomial case using a power basis,

We next determine the equations of tne time wave form corresponding to this
method of fitting the spectrum. While the inverse transform of the general
basis function is rather complicated, we can develop a formulation for

spacific instances.

Let the knots Wiveso Wy be evenly spaced with spacing Di and

cyB (W), w0
Ai(w):
ci'Bi(-w). otherwise.

Taen, usirg the conveolutional propertry of uniformly spaced B-splines and the
convc.utional property of Fourier transforms yields

r‘mi(w)1:mi/z)x(sin(niu/zy{iw/z)k (3
x(aiccs Wi*zt +* bisin Hi+2t)

Taus, if all the knots have spacing D the estimate of s(tp.t) is

-, -

1
ra

7 202 bin(owr2yBur2)X
xZa‘:cS(ih?)Dt + bisin(ia-Z)Dt.
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A decaying high order trignometric polynomial with fundamental frequency D is
the resulting signal. More {interesting cases occur when the spacing 1is
nonuniform. This feature allows a much closer fit in frequency ranges
sslectively determined to be more important to the intelligibility of the
signal, and has some resemblances to selective LPC while insuring the degree
of contiruity desired. The simplest case uses sections of uniformly spaced
knots with different spacing in each section. The inverse transforms of the
transition A(w)'s will not have the simple form derived above, but the
contributions of the others to the synthetic waveform are sums of decaying
trignometric polynomials with different fundamental frequencies and different
rates of decay. It is postulated that these parametrized waveforms carry

signal information in a form faithful to the original.

APPLICATIONS

Tnis general class of methods has not yet been widely tested or developed.
However, it has been applied to a variety of selective speech signals to test
for intelligibility and faithfulness in the presence of multiple speakers,
female speakers, and noise at various levels, as well as on clear speech,
Figures 1-4 illustrate a sequence from a voiced signal sampled at 10 kh. 1In
each of the figures the one on the left is from the original signal, while
that on the right is from the synthetic signal. Further testing to determine
good knot 1locations and number of parameters desirable for various
applications seem worthwhile, including gaining further information about the
phase of the signal,
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